Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tsitologiia ; 55(3): 167-71, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23795459

RESUMO

Each genus of small apes has a highly distinctive karyotype (karyomorph) at every level of cytogenetic analysis. Early workers using classical staining and banding had problems integrating the karyolocial data with that of other primates. Chromosome painting allowed syntenic homology maps to be constructed for each of the four karyomorphs (2n = 38, 44, 50 and 52). They revealed that the great apes and Old World monkeys had strongly conserved karyotypes while those of small apes were highly rearranged. However, they provided contradictory phylogenetic results to other bio-molecular tree of small ape evolution. More recently BAC-FISH investigations using a panel of about 900 BACs defined each breakpoint by spanning or flanking BAC clones The syntenic map was refined and now includes small segments of homology which had previously gone undected, marker order (synteny block orientation) and the location of ancestral and Evolutionarily New Centromeres. However, the BAC-FISH data similar to other biomolecular methods used up to now could not resolve the phylogenetic tree of hylobatids. These difficulties may be explained by the rapid divergence of crown hylobatids, reticulate evolution and incomplete lineage sorting. The lack of significant cytogenetic landmarks at the nodes of the gibbon tree could indicate that chromosomal rearrangements did not play a primary role in hylobatid speciation.


Assuntos
Cromossomos/genética , Hylobatidae/genética , Cariótipo , Sintenia/genética , Animais , Cercopithecidae/genética , Mapeamento Cromossômico , Coloração Cromossômica , Especiação Genética , Humanos , Hylobates/genética , Filogenia
2.
Cytogenet Genome Res ; 137(2-4): 83-96, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22846392

RESUMO

Genome diversity has long been studied from the comparative cytogenetic perspective. Early workers documented differences between species in diploid chromosome number and fundamental number. Banding methods allowed more detailed descriptions of between-species rearrangements and classes of differentially staining chromosome material. The infusion of molecular methods into cytogenetics provided a third revolution, which is still not exhausted. Chromosome painting has provided a global view of the translocation history of mammalian genome evolution, well summarized in the contributions to this special volume. More recently, FISH of cloned DNA has provided details on defining breakpoint and intrachromosomal marker order, which have helped to document inversions and centromere repositioning. The most recent trend in comparative molecular cytogenetics is to integrate sequencing information in order to formulate and test reconstructions of ancestral genomes and phylogenomic hypotheses derived from comparative cytogenetics. The integration of comparative cytogenetics and sequencing promises to provide an understanding of what drives chromosome rearrangements and genome evolution in general. We believe that the contributions in this volume, in no small way, point the way to the next phase in cytogenetic studies.


Assuntos
Análise Citogenética , Mamíferos/genética , Animais , Aves/genética , Coloração Cromossômica/história , Análise Citogenética/história , Análise Citogenética/tendências , Código de Barras de DNA Taxonômico , Evolução Molecular , Genômica , História do Século XX , História do Século XXI , Humanos , Hibridização in Situ Fluorescente/história , Cariotipagem , Modelos Genéticos , Répteis/genética
3.
Cytogenet Genome Res ; 137(2-4): 144-53, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22868637

RESUMO

Afrotheria is the clade of placental mammals that, together with Xenarthra, Euarchontoglires and Laurasiatheria, represents 1 of the 4 main recognized supraordinal eutherian clades. It reunites 6 orders of African origin: Proboscidea, Sirenia, Hyracoidea, Macroscelidea, Afrosoricida and Tubulidentata. The apparently unlikely relationship among such disparate morphological taxa and their possible basal position at the base of the eutherian phylogenetic tree led to a great deal of attention and research on the group. The use of biomolecular data was pivotal in Afrotheria studies, as they were the basis for the recognition of this clade. Although morphological evidence is still scarce, a plethora of molecular data firmly attests to the phylogenetic relationship among these mammals of African origin. Modern cytogenetic techniques also gave a significant contribution to the study of Afrotheria, revealing chromosome signatures for the group as a whole, as well as for some of its internal relationships. The associations of human chromosomes HSA1/19 and 5/21 were found to be chromosome signatures for the group and provided further support for Afrotheria. Additional chromosome synapomorphies were also identified linking elephants and manatees in Tethytheria (the associations HSA2/3, 3/13, 8/22, 18/19 and the lack of HSA4/8) and elephant shrews with the aardvark (HSA2/8, 3/20 and 10/17). Herein, we review the current knowledge on Afrotheria chromosomes and genome evolution. The already available data on the group suggests that further work on this apparently bizarre assemblage of mammals will provide important data to a better understanding on mammalian genome evolution.


Assuntos
Cromossomos de Mamíferos/genética , Evolução Molecular , Mamíferos/classificação , Mamíferos/genética , África , Animais , Bandeamento Cromossômico , Análise Citogenética , Diploide , Feminino , Humanos , Procaviídeos/classificação , Procaviídeos/genética , Masculino , Filogenia , Mamífero Proboscídeo/classificação , Mamífero Proboscídeo/genética , Sirênios/classificação , Sirênios/genética , Xenarthra/classificação , Xenarthra/genética
4.
Cytogenet Genome Res ; 137(2-4): 273-84, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22710640

RESUMO

The catarrhine primates were the first group of species studied with comparative molecular cytogenetics. Many of the fundamental techniques and principles of analysis were initially applied to comparisons in these primates, including interspecific chromosome painting, reciprocal chromosome painting and the extensive use of cloned DNA probes for evolutionary analysis. The definition and importance of chromosome syntenies and associations for a correct cladistics analysis of phylogenomic relationships were first applied to catarrhines. These early chromosome painting studies vividly illustrated a striking conservation of the genome between humans and macaques. Contemporarily, it also revealed profound differences between humans and gibbons, a group of species more closely related to humans, making it clear that chromosome evolution did not follow a molecular clock. Chromosome painting has now been applied to more that 60 primate species and the translocation history has been mapped onto the major taxonomic divisions in the tree of primate evolution. In situ hybridization of cloned DNA probes, primarily BAC-FISH, also made it possible to more precisely map breakpoints with spanning and flanking BACs. These studies established marker order and disclosed intrachromosomal rearrangements. When applied comparatively to a range of primate species, they led to the discovery of evolutionary new centromeres as an important new category of chromosome evolution. BAC-FISH studies are intimately connected to genome sequencing, and probes can usually be assigned to a precise location in the genome assembly. This connection ties molecular cytogenetics securely to genome sequencing, assuring that molecular cytogenetics will continue to have a productive future in the multidisciplinary science of phylogenomics.


Assuntos
Catarrinos/classificação , Catarrinos/genética , Animais , Centrômero/genética , Cercopithecidae/classificação , Cercopithecidae/genética , Cercopithecinae/classificação , Cercopithecinae/genética , Mapeamento Cromossômico , Coloração Cromossômica , Cromossomos Artificiais Bacterianos , Cromossomos de Mamíferos/genética , Colobinae/classificação , Colobinae/genética , Análise Citogenética , Evolução Molecular , Feminino , Humanos , Hylobatidae/classificação , Hylobatidae/genética , Hibridização in Situ Fluorescente , Masculino , Especificidade da Espécie
5.
Cytogenet Genome Res ; 136(3): 175-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22488112

RESUMO

We hybridized human chromosome paints on metaphases of the pygmy tree shrew (Tupaia minor, Scandentia). The lack of the ancestral mammalian 4/8 association in both Primates and Scandentia was long considered a cytogenetic landmark that phylogenetically linked these mammalian orders. However, our results show that the association 4/8 is present in Tupaia along with not previously reported associations for 1/18 and 7/10. Altogether there are 11 syntenic associations of human chromosome segments in the pygmy tree shrew karyotype: 1/18, 2/21, 3/21, 4/8, 7/10, 7/16, 11/20, 12/22 (twice), 14/15 and 16/19. Our data remove any cytogenetic evidence that Scandentia has a preferential phylogenetic relationship with Primates.


Assuntos
Coloração Cromossômica , Primatas/genética , Tupaiidae/genética , Animais , Linhagem Celular , Bandeamento Cromossômico , Humanos , Cariotipagem , Masculino , Filogenia , Primatas/classificação , Tupaiidae/classificação
6.
Heredity (Edinb) ; 108(1): 59-67, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22045381

RESUMO

The evolutionary history of chromosomes can be tracked by the comparative hybridization of large panels of bacterial artificial chromosome clones. This approach has disclosed an unprecedented phenomenon: 'centromere repositioning', that is, the movement of the centromere along the chromosome without marker order variation. The occurrence of evolutionary new centromeres (ENCs) is relatively frequent. In macaque, for instance, 9 out of 20 autosomal centromeres are evolutionarily new; in donkey at least 5 such neocentromeres originated after divergence from the zebra, in less than 1 million years. Recently, orangutan chromosome 9, considered to be heterozygous for a complex rearrangement, was discovered to be an ENC. In humans, in addition to neocentromeres that arise in acentric fragments and result in clinical phenotypes, 8 centromere-repositioning events have been reported. These 'real-time' repositioned centromere-seeding events provide clues to ENC birth and progression. In the present paper, we provide a review of the centromere repositioning. We add new data on the population genetics of the ENC of the orangutan, and describe for the first time an ENC on the X chromosome of squirrel monkeys. Next-generation sequencing technologies have started an unprecedented, flourishing period of rapid whole-genome sequencing. In this context, it is worth noting that these technologies, uncoupled from cytogenetics, would miss all the biological data on evolutionary centromere repositioning. Therefore, we can anticipate that classical and molecular cytogenetics will continue to have a crucial role in the identification of centromere movements. Indeed, all ENCs and human neocentromeres were found following classical and molecular cytogenetic investigations.


Assuntos
Centrômero/genética , Evolução Molecular , Animais , Centrômero/metabolismo , Cromossomos Artificiais Bacterianos , Especiação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hibridização in Situ Fluorescente , Mamíferos/genética , Polimorfismo Genético , Telômero/genética , Telômero/metabolismo
7.
Cytogenet Genome Res ; 134(1): 40-50, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21335958

RESUMO

Cytogenetic studies showed that a number of New World primate taxa, particularly the genera Alouatta, Aotus, and Callicebus, have highly derived karyotypes. Cytogenetics in these primates, at every level of analysis, has contributed to the recognition of species and revealed that their number was certainly underestimated by researchers relying solely on traditional morphological data. Further attention was drawn to Alouatta and Aotus because they are characterized by translocations of the Y chromosome to autosomes, generating multiple sex chromosome systems. Here we present a report on the hybridization of human chromosome-specific paints on metaphases from 4 individuals originally assigned to Alouatta caraya and 1 individual of Aotuslemurinus. This is only the third karyotype studied with chromosome painting out of more than 10 known karyomorphs in Aotus. The banded chromosomes matched those of karyotype II as defined by Ma et al. [1976a], and we were able to more precisely assign the origin of the sample to A. l. griseimembra. Our results on the Argentinean Alouatta caraya samples were generally comparable to the banding and hybridization pattern of previous studies of A. caraya including the presence of an X(1)X(1)X(2)X(2)/X(1)X(2)Y(1)Y(2) sex chromosome system. The karyotype of the Brazilian Alouatta sample labeled as A. caraya differs from the 3 Argentinean samples by at least 10 chromosome rearrangements. The diploid number, G banding, and hybridization pattern of this female cell line was almost identical to previous painting results on Alouatta guariba guariba. Therefore we must conclude that this cell line is actually from an A. guariba guariba individual. The contribution of cytogenetic tools in identifying species or in this case assigning individuals or cell lines to their precise taxonomic allocation is stressed. Gathering further molecular cytogenetic data on New World primates should be conservation and management priorities.


Assuntos
Alouatta/genética , Aotidae/genética , Cromossomos de Mamíferos , Animais , Coloração Cromossômica , Feminino , Cariotipagem , Masculino
8.
Genetika ; 46(9): 1226-33, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21058511

RESUMO

Establishing chromosomal homology in comparative cytogenetics remained speculative until the advent of molecular cytogenetics. Chromosome sorting by flow cytometry and degenerate oligonucleotide primed-PCR (DOP-PCR) brought a significant simplification and impetus to chromosome painting. Comparative chromosome painting has permitted reasonable hypotheses for ancestral karyotypes at many points on the phylogenetic tree of mammals. Derived associations often provided landmarks that showed the route evolution took. More recently hybridization with cloned DNA has provided information on intrachromosomal rearrangements. BAC-FISH allows marker order, in addition to syntenies and associations, to be added to the ancestral karyotypes. Comparisons of marker order across species revealed that centromere shifts (evolutionary new centromeres) are frequent and important phenomena of chromosome evolution. Further comparison between evolutionary new centromeres and clinical neocentromeres shows that an evolutionary perspective can provide compelling, underlying, explicative grounds for contemporary genomic phenomena.


Assuntos
Centrômero/genética , Cromossomos de Mamíferos/genética , Ordem dos Genes , Primatas/genética , Animais , Evolução Biológica , Coloração Cromossômica , Rearranjo Gênico , Marcadores Genéticos , Humanos , Cariotipagem , Filogenia
9.
Clin Genet ; 75(3): 259-64, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19170718

RESUMO

Toriello-Carey syndrome (TCS; OMIM 217980) is a multiple congenital anomaly syndrome characterized by the common manifestations of corpus callosum agenesis, cardiac defects, cleft palate/Robin sequence, hypotonia, mental retardation, postnatal growth retardation and distinctive facial dysmorphology (including micrognathia, telecanthus, small nose and full cheeks). Both autosomal recessive and X-linked inheritance have been proposed, but chromosomal abnormalities involving disparate loci have also been detected in a small number of cases. We report a patient with classical features of TCS and an apparently balanced de novo translocation between chromosomes 2 and 14 [46,XY,t(2;14)(q33;q22)]. Molecular characterization revealed direct interruption of the special AT-rich sequence-binding protein-2 (SATB2) gene at the 2q33.1 translocation breakpoint, while the 14q22.3 breakpoint was not intragenic. SATB2 mutation or deletion has been associated with both isolated and syndromic facial clefting; however, an association with TCS has not been reported. SATB2 functions broadly as a transcription regulator, and its expression patterns suggest an important role in craniofacial and central nervous system development, making it a plausible candidate gene for TCS.


Assuntos
Anormalidades Múltiplas/genética , Cromossomos Humanos Par 14/genética , Cromossomos Humanos Par 2/genética , Proteínas de Ligação à Região de Interação com a Matriz/genética , Fatores de Transcrição/genética , Translocação Genética/genética , Anormalidades Múltiplas/patologia , Síndrome Acrocalosal/genética , Agenesia do Corpo Caloso , Anormalidades Craniofaciais/genética , Face/anormalidades , Genes Ligados ao Cromossomo X , Cardiopatias Congênitas/genética , Humanos , Recém-Nascido , Deficiência Intelectual/genética , Masculino , Síndrome
10.
Chromosome Res ; 16(8): 1215-31, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19051045

RESUMO

The karyotypic relationships of skunks (Mephitidae) with other major clades of carnivores are not yet established. Here, multi-directional chromosome painting was used to reveal the karyological relationships among skunks and between Mephitidae (skunks) and Procyonidae (raccoons). Representative species from three genera of Mephitidae (Mephitis mephitis, 2n = 50; Mephitis macroura, 2n = 50; Conepatus leuconotus, 2n = 46; Spilogale gracilis, 2n = 60) and one species of Procyonidae (Procyon lotor, 2n = 38) were studied. Chromosomal homology was mapped by hybridization of five sets of whole-chromosome paints derived from stone marten (Martes foina, 2n = 38), cat, skunks (M. mephitis; M. macroura) and human. The karyotype of the raccoon is highly conserved and identical to the hypothetical ancestral musteloid karyotype, suggesting that procyonids have a particular importance for establishing the karyological evolution within the caniforms. Ten fission events and five fusion events are necessary to generate the ancestral skunk karyotype from the ancestral carnivore karyotype. Our results show that Mephitidae joins Canidae and Ursidae as the third family of carnivores that are characterized by a high rate of karyotype evolution. Shared derived chromosomal fusion of stone marten chromosomes 6 and 14 phylogenetically links the American hog-nosed skunk and eastern spotted skunk.


Assuntos
Cromossomos de Mamíferos/genética , Rearranjo Gênico/genética , Mephitidae/genética , Filogenia , Animais , Coloração Cromossômica , Hibridização in Situ Fluorescente , Cariotipagem , Especificidade da Espécie
11.
Chromosome Res ; 16(1): 17-39, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18293103

RESUMO

In 1992 the Japanese macaque was the first species for which the homology of the entire karyotype was established by cross-species chromosome painting. Today, there are chromosome painting data on more than 50 species of primates. Although chromosome painting is a rapid and economical method for tracking translocations, it has limited utility for revealing intrachromosomal rearrangements. Fortunately, the use of BAC-FISH in the last few years has allowed remarkable progress in determining marker order along primate chromosomes and there are now marker order data on an array of primate species for a good number of chromosomes. These data reveal inversions, but also show that centromeres of many orthologous chromosomes are embedded in different genomic contexts. Even if the mechanisms of neocentromere formation and progression are just beginning to be understood, it is clear that these phenomena had a significant impact on shaping the primate genome and are fundamental to our understanding of genome evolution. In this report we complete and integrate the dataset of BAC-FISH marker order for human syntenies 1, 2, 4, 5, 8, 12, 17, 18, 19, 21, 22 and the X. These results allowed us to develop hypotheses about the content, marker order and centromere position in ancestral karyotypes at five major branching points on the primate evolutionary tree: ancestral primate, ancestral anthropoid, ancestral platyrrhine, ancestral catarrhine and ancestral hominoid. Current models suggest that between-species structural rearrangements are often intimately related to speciation. Comparative primate cytogenetics has become an important tool for elucidating the phylogeny and the taxonomy of primates. It has become increasingly apparent that molecular cytogenetic data in the future can be fruitfully combined with whole-genome assemblies to advance our understanding of primate genome evolution as well as the mechanisms and processes that have led to the origin of the human genome.


Assuntos
Centrômero/genética , Cromossomos de Mamíferos/genética , Evolução Molecular , Ordem dos Genes , Primatas/genética , Animais , Marcadores Genéticos , Humanos , Cariotipagem
12.
Am J Primatol ; 68(4): 349-59, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16534804

RESUMO

We report on the first reciprocal chromosome painting of lorisoids and humans. The chromosome painting showed a remarkable syntenic homology between Otolemur and Nycticebus. Eight derived syntenic associations of human segments are common to both Otolemur and Nycticebus, indicative of a considerable period of common evolution between the greater galago and the slow loris. Five additional Robertsonian translocations form the slow loris karyotype, while the remaining chromosomes are syntenically equivalent, although some differ in terms of centromere position and heterochromatin additions. Strikingly, the breakpoints of the human chromosomes found fragmented in these two species are apparently identical. Only fissions of homologs to human chromosomes 1 and 15 provide significant evidence of a cytogenetic link between Lemuriformes and Lorisiformes. The association of human chromosomes 7/16 in both lorisoids strongly suggests that this chromosome was present in the ancestral primate genome.


Assuntos
Coloração Cromossômica/métodos , Evolução Molecular , Lorisidae/genética , Sintenia/genética , Animais , Linhagem Celular , Cromossomos Humanos/genética , Fibroblastos , Humanos , Cariotipagem
13.
J Dent Res ; 84(10): 907-12, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16183789

RESUMO

Human post-natal stem cells possess a great potential to be utilized in stem-cell-mediated clinical therapies and tissue engineering. It is not known whether cryopreserved human tissues contain functional post-natal stem cells. In this study, we utilized human periodontal ligament to test the hypothesis that cryopreserved human periodontal ligament contains retrievable post-natal stem cells. These cryopreserved periodontal ligament stem cells maintained normal periodontal ligament stem cell characteristics, including expression of the mesenchymal stem cell surface molecule STRO-1, single-colony-strain generation, multipotential differentiation, cementum/periodontal-ligament-like tissue regeneration, and a normal diploid karyotype. Collectively, this study provides valuable evidence demonstrating a practical approach to the preservation of solid-frozen human tissues for subsequent post-natal stem cell isolation and tissue regeneration. The present study demonstrates that human post-natal stem cells can be recovered from cryopreserved human periodontal ligament, thereby providing a practical clinical approach for the utilization of frozen tissues for stem cell isolation.


Assuntos
Diferenciação Celular/fisiologia , Criopreservação , Cemento Dentário/citologia , Células-Tronco Multipotentes/citologia , Osteoblastos/citologia , Ligamento Periodontal/citologia , Transplante de Células-Tronco , Adulto , Animais , Sobrevivência Celular/fisiologia , Células Cultivadas , Humanos , Camundongos , Camundongos Nus , Dente Serotino , Células-Tronco Multipotentes/fisiologia , Estatísticas não Paramétricas , Transplante Heterólogo
14.
Chromosome Res ; 13(1): 85-96, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15791414

RESUMO

We developed chromosome painting probes for Callicebus pallescens from flow-sorted chromosomes and used multidirectional chromosome painting to investigate the genomic rearrangements in C. cupreus and C. pallescens. Multidirectional painting provides information about chromosomal homologies at the subchromosomal level and rearrangement break points, allowing chromosomes to be used as cladistic markers. Chromosome paints of C. pallescens were hybridized to human metaphases and 43 signals were detected. Then, both human and C. pallescens probes were hybridized to the chromosomes of another titi monkey, C. cupreus. The human chromosome paints detected 45 segments in the haploid karyotype of C. cupreus. We found that all the syntenic associations proposed for the ancestral platyrrhine karyotype are present in C. cupreus and in C. pallescens. The rearrangements differentiating C. pallescens from C. cupreus re one inversion, one fission and three fusions (two tandem and one Robertsonian)that occurred on the C. cupreus lineage. Our results support the hypothesis that karyological evolution in titi monkeys has resulted in reduction in diploid number and that species with higher diploid numbers (with less derived, more ancestral karyotypes)are localized in the centre of the geographic range of the genera, while more derived species appear to occupy the periphery.


Assuntos
Cebidae/genética , Coloração Cromossômica , Cromossomos de Mamíferos/genética , Rearranjo Gênico , Genoma , Animais , Mapeamento Cromossômico , Sondas de DNA , Diploide , Evolução Molecular , Citometria de Fluxo , Humanos , Hibridização in Situ Fluorescente , Cariotipagem , Metáfase , Sintenia
15.
Cytogenet Genome Res ; 108(1-3): 175-82, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15545727

RESUMO

We report on reciprocal painting between humans and two Cercopithecini species, Erythrocebus patas (patas monkey) and Cercopithecus neglectus (De Brazza's monkey). Both human and monkeys chromosome-specific probes were made by degenerate oligonucleotide primed PCR (DOP-PCR) from flow sorted chromosomes. Metaphases of both monkey species were first hybridized with human chromosome-specific probes and then human metaphases were hybridized with chromosome paints from each monkey species. The human paint probes detected 34 homologous segments on the C. neglectus karyotype, while the C. neglectus probes, including the Y, revealed 41 homologous segments on the human karyotype. The probes specific for human chromosomes detected 29 homologous segments in the E. patas karyotype, while the patas monkey probes painted 34 segments on the human karyotype. We tested various hypotheses of Cercopithecini phylogeny and taxonomy developed by morphologists, molecular biologists and cytogeneticists. Our hybridization data confirm that fissions (both Robertsonian and non-Robertsonian) are the main mechanism driving the evolutionary trend in Cercopithecini toward higher diploid numbers and strongly suggest an early phylogenetic bifurcation in Cercopithecini. One branch leads to Cercopithecus neglectus/Cercopithecus wolfi while the other line leads to Erythrocebus patas/Chlorocebus aethiops. Allenopithecus nigroviridis may have diverged prior to this major phylogenetic node.


Assuntos
Cercopithecinae/genética , Cercopithecus/genética , Coloração Cromossômica/métodos , Cromossomos Humanos/genética , Cromossomos de Mamíferos/genética , Erythrocebus patas/genética , Filogenia , Animais , Sondas de DNA/genética , Citometria de Fluxo/métodos , Humanos , Homologia de Sequência do Ácido Nucleico
16.
Chromosoma ; 113(6): 305-15, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15616867

RESUMO

We mapped chromosomal homologies in two species of Chiropotes (Pitheciini, Saki Monkeys) and one species of Aotus (Aotinae, Owl Monkey) by multi-directional chromosome painting. Human chromosome probes were hybridized to Chiropotes utahicki, C. israelita and Aotus nancymae metaphases. Wooly Monkey chromosome paints were also hybridized to Owl Monkey metaphases. We established Owl Monkey chromosome paint probes by flow sorting and reciprocally hybridized them to human chromosomes. The karyotypes of the Bearded Saki Monkeys studied here are close to the hypothesized ancestral platyrrhine karytoype, while that of the Owl Monkey appears to be highly derived. The A. nancymae karyotype is highly shuffled and only three human syntenic groups were found conserved coexisting with 17 derived human homologous associations. A minimum of 14 fissions and 13 fusions would be required to derive the A. nancymae karyotype from that of the ancestral New World primate karyotype. An inversion between homologs to segments of human 10 and 16 suggests a link between Callicebus and Chiropotes, while the syntenic association of 10/11 found in Aotus and Callicebus suggests a link between these two genera. Future molecular cytogenetic work will be needed to determine whether these rearrangements represent synapomorphic chromosomal traits.


Assuntos
Cebidae/classificação , Cebidae/genética , Cromossomos Humanos , Cromossomos de Mamíferos , Filogenia , Animais , Coloração Cromossômica , DNA/química , Humanos , Cariotipagem , Homologia de Sequência do Ácido Nucleico , Sintenia
17.
Cytogenet Genome Res ; 105(2-4): 406-11, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15237228

RESUMO

We report on the hybridization of mouse chromosomal paints to Apodemus sylvaticus, the long-tailed field mouse. The mouse paints detected 38 conserved segments in the Apodemus karyotype. Together with the species reported here there are now six species of rodents mapped with Mus musculus painting probes. A parsimony analysis indicated that the syntenies of nine M. musculus chromosomes were most likely already formed in the muroid ancestor: 3, 4, 7, 9, 14, 18, 19, X and Y. The widespread occurrence of syntenic segment associations of mouse chromosomes 1/17, 2/13, 7/19, 10/17, 11/16, 12/17 and 13/15 suggests that these associations were ancestral syntenies for muroid rodents. The muroid ancestral karyotype probably had a diploid number of about 2n = 54. It would be desirable to have a richer phylogenetic array of species before any final conclusions are drawn about the Muridae ancestral karyotype. The ancestral karyotype presented here should be considered as a working hypothesis.


Assuntos
Evolução Biológica , Genoma , Muridae/genética , Animais , Células Cultivadas , Coloração Cromossômica , Cariotipagem , Roedores/genética
18.
Chromosoma ; 112(4): 201-6, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14608465

RESUMO

Cytogenetic studies have shown that New World primates are karyologically diverse and highly derived. The genus Callicebus is the best example of this karyological diversity, with diploid numbers ranging from 2n=50 to 2n=16. We report on Callicebus lugens, which has the lowest diploid number (2n=16) yet found in the primate order and represents a striking example of extreme karyotypic shuffling. To better understand the genomic rearrangements that have resulted in this extremely low diploid number, we mapped chromosome homologies between C. lugens and humans by in situ hybridization. The total number of hybridization signals was 42, excluding the Y chromosome, with a total of 34 syntenic associations not found in humans. This species has one of the most derived karyotypes among the Platyrrhini. Fusion has been the predominant mode of karyological evolution, although fissions and inversions have also transformed the C. lugens karyotype. Remarkably in such a highly rearranged karyotype, the synteny of 11 human chromosomes (4, 5, 9, 12, 13, 14, 17, 18, 20, 21, and X) was maintained intact, even if most of these human-homologous gene clusters were translocated. Other human syntenies, such as homologues to human chromosomes 10 and 16, were highly fragmented. Comparisons of the C. lugens-human homology map with those of other New World primates have not yet helped establish a phylogenic arrangement between congeneric species or link Callicebus with any other genus.


Assuntos
Cebidae/genética , Coloração Cromossômica , Cromossomos de Mamíferos/genética , Sintenia/genética , Animais , Evolução Molecular , Humanos , Hibridização In Situ , Cariotipagem , Filogenia
19.
Am J Primatol ; 60(3): 85-93, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12874840

RESUMO

The exceptional diploid number (2n=48) of the proboscis monkey (Nasalis larvatus) has played a pivotal role in phylogenies that view the proboscis monkey as the most primitive colobine, and a long-isolated genus of the group. In this report we used molecular cytogenetic methods to map the chromosomal homology of the proboscis monkey in order to test these hypotheses. Our results reveal that the N. larvatus karyotype is derived and is not primitive in respect to other colobines (2n=44) and most other Old World monkeys. The diploid number of 2n=48 can be best explained by derived fissions of a segment of human chromosomes 14 and 6. The fragmentation and association of human chromosomes 1 and 19 as seen in other Asian colobines, but not in African colobines, is best explained as a derived reciprocal translocation linking all Asian colobines. The alternating hybridization pattern between four segments homologous to human chromosomes 1 and 19 on N. larvatus chromosome 6 is the result of the reciprocal translocation followed by a pericentric inversion. N. larvatus shares this pericentric inversion with Trachypithecus, but not with Pygathrix. This inversion apparently links Nasalis and Trachypithecus after the divergence of Pygathrix. The karyological data support the view that Asian colobines, including N. larvatus, are monophyletic. They share many linking karyological features separating them from the African colobines. The hybridization pattern also suggests that Nasalis is nested within Asian Colobines and shares a period of common descent with other Asian colobines after the divergence of Pygathrix.


Assuntos
Coloração Cromossômica/veterinária , Cromossomos de Mamíferos/genética , Colobinae/classificação , Colobinae/genética , Filogenia , Animais , Cromossomos Humanos/genética , Humanos , Cariotipagem/veterinária , Translocação Genética
20.
Cancer Res ; 61(16): 6255-63, 2001 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-11507080

RESUMO

Interleukin-2-based regimens of biological therapy have shown some clinical promise for the treatment of kidney cancer in humans, although the mechanisms responsible for tumor regression occurring in these patients remain unclear. Preclinical insight into these mechanisms is limited by a paucity of orthotopic animal models of kidney cancer. We have used streptozotocin, an antibiotic and diabetogenic nitrosamine compound derived from Streptomyces achromogenes to induce new kidney tumors in BALB/c mice. Single or multiple doses of streptozotocin induced kidney tumors in up to 25% of mice by 50-90 weeks of age, with up to 18% characterized as renal cell carcinomas (RCCs). Several transplantable lines were obtained from the RCCs, and one of these lines was subsequently cloned. The initial tumor isolates and sublines were histologically reconfirmed to be RCCs, and all grew progressively but slowly (mean survival times, 57 to >100 days) in vivo after intrarenal implant. None of the primary isolates or sublines revealed mutations in either the VHL or Ras genes, although karyotype analysis and chromosome painting revealed the consistent presence of a submetacentric chromosome resulting from the fusion of chromosomes 16 and 19. Biological characterization of these tumors revealed several features analogous to the growth of human kidney cancers, including a propensity for the formation of lung metastases and high vascularity. This hypervascularity is evident by both gross and microscopic analysis and correlates with the expression of several proangiogenic genes. Overall, the features of orthotopic transplantability, slower in vivo growth (relative to the rapid growth rates of other transplantable mouse kidney tumors), propensity for lung metastases, and hypervascularity may make these tumors valuable models for the study of new therapeutic strategies based on antineovascular agents and antitumor cytokines.


Assuntos
Carcinoma de Células Renais/induzido quimicamente , Neoplasias Renais/induzido quimicamente , Proteínas de Neoplasias , Estreptozocina , Animais , Carcinoma de Células Renais/irrigação sanguínea , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Divisão Celular/efeitos dos fármacos , Cisteína Endopeptidases , Análise Mutacional de DNA , Feminino , Neoplasias Renais/irrigação sanguínea , Neoplasias Renais/genética , Neoplasias Renais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Neovascularização Patológica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...